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This article describes a source detection strategy for the SETI All Sky Survey. The
method is designed to detect continuous wave (or very narrowband) sources transiting
an antenna beam. The short-time spectra of the received signal are accumulated, and
candidate extraterrestrial sources are recognized by the presence of narrowband power
exceeding a threshold function. The threshold function is derived using a Neyman-

Pearson hypothesis test,

l. Introduction

The NASA program for the Search for Extraterrestrial
Intelligence (SETI) is currently developing prototype signal
processing hardware and software, search strategies, and
observing procedures for an ambitious search to be conducted
in the early 1990’s. The long range NASA SETI plan calls
for an All Sky Survey covering the 1-10 GHz frequency range
and a Targeted Search covering the 1-3 GHz frequency range.
In the All Sky Survey, all 4 steradians of the celestial sphere
will be surveyed with approximately uniform sensitivity for
the presence of narrowband signals of extraterrestrial origin.
In the Targeted Search, a thousand candidate sources will be
observed, including nearby solar-type stars and interesting
sources identified by the All Sky Survey.

The JPL SETI team has the responsibility for designing,
developing, and implementing the All Sky Survey. To detect

ETI signals, which are assumed to be narrowband, we divide
the input bandwidth into narrowband channels using a Fast
Fourier Transform (FFT). The FFT output power in each
channel is accumulated and convolved with a filter matched
to the antenna beam shape. A thresholding operation is
performed on the matched-filter output to locate channels
with excess power. These events are stored for a confirmation
test on the return scan. The processing up to and including
the matched filter is performed in a high-speed digital spec-
trum analyzer such as that described in Ref. 1. A digital
computer system will detect ETI signals from the spectrum
analyzer output.

This report presents the current design for the signal detec-
tion strategy. In the next section we describe the All Sky
Survey. Section III describes the signal characteristics, and in
Section IV we derive the performance characteristics for a
Neyman-Pearson detection system applied to these signals.
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Il. The SETI All Sky Survey

The characteristics of the All Sky Survey are shown in
Table 1. The basic premise of the Sky Survey is that we do
not know where to look. There are over a million solar-type
stars within a thousand light years of the earth, and their
density per unit steradian is approximately uniform. Since we
also do not know how strong a signal might be, there is no
preferred direction within this volume of stars.

To satisfy the first three characteristics, the antenna beam
must be swept across the sky at 20 to 50 times the sidereal
rate, The sensitivity of the survey is thereby established
(within an order of magnitude), and the class of signal types
is restricted to Continuous Wave (CW) and narrowband signals
with bandwidths from 10 to 30 Hz,

The requirement of uniform sensitivity affects the signal
detection strategy and the scan strategy. The specified varia-
tion of sensitivity with frequency results from a compromise
among frequency coverage, survey duration, and sensitivity.
It assumes that the angular rate at which the main beam of
the antenna is swept across the celestial sphere is independent
of the survey frequency. Because the beam area is inversely
proportional to frequency squared, the duration of the survey
is approximately proportional to the square of the highest
frequency observed. If it were required that the sensitivity
be independent of frequency, the scan rate would increase
with frequency, and the duration of the survey would then
be proportional to the cube of the highest frequency observed

A survey of the sky to a uniform limiting flux at any given
frequency requires that the main beam of the antenna be
swept across the celestial sphere at a rate that varies inversely
as the square of the system temperature. The scan strategy is
therefore designed to minimize the system temperature and
its fluctuations, caused, for example, by changing sidelobe
pickup and sky temperature variations. It must also utilize
the antenna time efficiently, minimizing the time spent
accelerating and decelerating and the time lost waiting for
mechanical oscillations to damp out. Since SETI will not be
the sole user of the antenna, it is necessary to subdivide the
celestial sphere into elements which can be observed over the
course of one to four hours and which are easily incorporated
into a complete sky map with minimum overlap. Finally,
the scan strategy must satisfy the requirements of the signal
detector for signal confirmation and RFI rejection. In order
to satisfy these conflicting requirements, we choose a reason-
able survey time and design our strategy to achieve maximum
sensitivity and uniformity. As -shown below, our strategy
requires that the scans be of moderate length and that suc-
cessive scans be adjacent to one another.
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Figure 1 is a schematic representation of one scan strategy
which can satisfy these requirements using an alt-azimuth
antenna. The pixels visible to the observatory are mapped by
scanning the beam along lines of constant declination near
transit. The maximum rate at which the antenna may be
driven places an upper bound to the declination range for
which this strategy may be employed and still yield a uni-
formly sensitive survey, since the required azimuth rate for
this strategy varies inversely with the cosine of the declination.
A different scan strategy must be employed at higher declina-
tions. In general, a pixel will be mapped using a boustro-
phedonic scan pattern designed to optimize the system tem-
perature by minimizing changes in elevation. A representative
three-scan pattern is shown in the center of Fig. 1.

Although we desire to minimize the time lost reversing
the direction of motion, care must be taken to avoid exciting
the normal modes of oscillation of the mechanical system.
Antenna dynamics and servo control time constants deter-
mine the duration of the turnaround period at the end of
each scan. The scan length must not be so short that a large
part of the time is wasted on the antenna turnaround.

lll. Signal Characteristics

If the number of independent samples included in the
accumulation is large, the limiting sensitivity to a CW source
achieved by accumulating over time 7 as the antenna beam is
swept through its position is:

1
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where « is the signal to noise ratio (SNR) for detection, T is
the system temperature (K), £ is Boltzmann’s constant (Watt-
sec/K), n is the aperture efficiency, D is the diameter of the
circular equivalent aperture (meters), and b is the spectral
resolution (Hz). The effective gain during the integration
time is represented by the dimensionless function, G(y),
which is defined here to be unity when the source is on the
beam axis. If the antenna beam tracks the source position
rather than scanning through it, the integral becomes 7 and the
limiting sensitivity decreases as 1/\/?.

The time required to move the antenna beam through one
half power beam width (HPBW) is approximately:

70c¢
s = T , @)




in seconds where ¢ is the speed of light (meter/sec), w is rate
in degrees/second at which the beam is swept across the sky
(deg/sec), and » is the frequency at which the survey is being
carried out (Hz). The length of time that the source will be
in the beam is approximately equal to 2z_, but the effective
gain will vary greatly over that time interval.

Figure 2(a) shows the expected response within a frequency
bin as the antenna beam is swept across the source position.
For simplicity only a one dimensional slice of the circularly
symmetric beam is shown, If the frequency response is mea-
sured as a source transits the beam, then the matched-filter
detector would convolve the response with the beam shape
shown. The ideal matched-filter would be many HPBWs long
in order to use all the power from the source. It is desirable
to find a practical filter length on the order of a HPBW, Fig-
ure 2(b) shows the SNR loss versus filter length in fractions
of a HPBW. For lengths greater than 0.9 HPBW, the loss is
less than 0.25 dB.

To keep the processing hardware cost-affordable, we
accumulate spectra until there are only 3 to 5 spectra per
HPBW. Figure 3(a) illustrates this coarser resolution and
shows that the best SNR is realized when a source transits
the center of the beam at the center of an accumulation
interval. The worst case is when the maximum occurs at the
transition between two accumulations. The uneven response
due to this difference in source position is called scalloping.
Figure 3(b) shows the SNR loss between the worst case and
the best case for filter lengths of 1 HPBW and 0.6 HPBW. In
both cases scalloping decreases as the number of accumula-
tions increases.

IV. The Signal Detection Strategy

The purpose of this section is to provide the background
and theoretical basis for SETI sky survey signal detector
performance evaluations. The problem is formulated as a
classical binary decision problem of detecting a signal with
random parameters in noise (Refs. 2, 3). Our treatment will
rely, where applicable, on results to be found in the radar
signal detection literature (Refs. 4, 5).

Figure 4 illustrates the basic front-end processing which is
to be performed on the received signal. The ETI signal is
assumed to be narrowband Continuous Wave (CW) of the
form:

s(t) = Acos Qnft+¢) (3)

and the spectrum analyzer is assumed to have a resolution of
20 Hz. The detection system is designed to test for the two
possibilities:

r(?)
()

A cos (2nft + ®), {H1}
(3a)

where n(f)is a zero-mean Gaussian noise process whose vari-
ance, o2, is determined by the effective system temperature.
Denoting by x,(f,) the jth sample of the ath frequency bin,
the accumulator output is given by:

N=1

AR PEVIR(ATE @

n=0

The probability density function (PDF) of the test statistic
¢ under the null hypothesis {#,} is the gamma distribution
with 2V degrees of freedom and E{{} = 2N, o2 = 4Nag.
The PDF of ¢ under the alternative hypothesis le} is the
non-central chi-square distribution, The parameters of the
PDF need to be explicitly related to the SETI observation
parameters. In the receiver input with signal present, Eq. (3),
if A were constant, then the 3“]. would have the form:

N

q =Z A +x)?

=1

where the x; are identically distributed Gaussian random

variables with- zero mean and variance 0(2) (the system noise).
However, under the conditions of the survey, the antenna
scans at a relatively rapid rate and thus during the time
required to accumulate N samples (T = N1, where 7 is the
analyzer sample time), the received signal is modulated by the
antenna beam pattern. We thus rewrite Eq. (3) as:

r(t) = A(#) cos (27U;t +¢) +n(2), 5)

and note that the actual form of the {, is now:

N
1_2 : N2
Q - - (Ai+xi)

Thus, from the results of Whalen (Ref. 2), the expression
for po(-) is the chi-square distribution with 2NV degrees of
freedom:

1 - e—r/(za%>
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and for pl(-) is:

w-1)2
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with 2V degrees of freedom, where:

N
N=2) 4
=1

In Eq. (7), £,(*) is the modified Bessel Function of the first
kind and order V. These distributions are discussed in detail
inn Refs. 2 and 6.

We are now in a position to examine explicitly the effects
of antenna scanning on p, (*). The antenna scan rate is w rad/
sec, and the main lobe half-power beam width (HPBW) is
§ rad. The scan rate in HPBWs/sec is:

v E w/Q )

If S represents the ETI signal flux at the surface of the earth
in W/m?, then

2 ¢ \2 ;
A) ( ik eso) exp (-3 12 (- 1,7 + (7%19%])
©

where D is the antenna diameter in meters, and € is the
antenna efficiency. A Gaussian main lobe shape has been
assumed, and the coordinate system chosen, (§,, &), is
centered on the moving bore-sight axis of the antenna, and
(g‘l’, Eg) denotes the actual source position. Thus, our expres-
sion for the 4,, which determines the non-central parameter, A,
is:

2
Af = 17%—- €S,
1 )2
X — f exp (- [ (- 1,)° + (GQ2/Q%])ar
;-1/2

(10)

This expression is rather cumbersome, so we make the gim-
plifying assumption that 7 << 1/v, i.e., point-wise sampling,
and rewrite Eq. (10) as:

1
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Note that the 4, have units of energy, so that the signal-to-
noise ratio (SNR) for a single sample observation 1s:

A?
=
SNR,; > (12)
0
If we re-examine the expression for §,, Eq. (4), we see that the
effect of antenna scanning is to produce weighted accumula-
tion of individual samples, where the weight function, w;, is
just:

w, = exp £ 2 (- 1,) + GOR/Q]} . (13)

From the above discussion, and our expression for w;, it
is apparent that for fixed (r, £, NV) increasing the antenna
scan rate above some value, w, . , reduces the accumulator
performance to no better than single sample detection. In
fact, an upper limit on scan rate may be set by choosing some
minimum weight for the Nth sample as the antenna scans
through a source. To illustrate the point, consider the case
where the source position is (2‘1), ’g‘g), Nisodd, and the center
sample is taken with the source on beam-axis, i.e., n=(N +1)/2
at & . The weight function is rewritten with time in units of
nT as:

w, = exp [-v*r* (n- N+ 1))2], n=1,2,-+-, N

(14)

Letting 8 denote the minimum desired weight, from Eq. (14)
we find

O = [in (1)) 2 (15)

ma:

or

s = Dy I 1IN 16)

where fj is the system operating frequency in GHz. Thus, for
D = 34 meters, fy = 1 GHz, 7 = 50 ms, and NV = 8, if we require
8 =0.5, then w,, = 10 mrad/sec. On the other hand, at the
upper end of the SETI survey frequency range, f, = 10 GHz,
we have w,,, = 1.0 mrad/sec which is significantly less than
scan rate capabilities of the antenna system. Since 7 is fixed
and w, . is only very weakly dependent on §, the dominat-
ing factor is our choice of N. For the time being we will
assume that w and N may be suitably chosen so as to yield
approximately uniform accumulator weighting; thus:

2
ﬂ‘z €S,
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and the non-central parameter appropriate for p, (*), Eq. (7)
is given by:

A = 2NA? (18)

We conclude our discussion of the statistics of {, by casting

the results obtained above in a form more amenable to compu-

tations described in Section IV. To accomplish this we intro-
duce the “normalized” test statistics

)

(19)

q, = (20)

!
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where the random variable (x;./ao) is now zero-mean Gaussian
with unit variance. The resulting PDFs under H, and Hl are
now given by (Ref. 2)

_ 1 }
p,(@) = o a" " exp (- 4/2)

@n

with 2V degrees of freedom, E {g} = 2N, Var {g} = 4NV, and

1{q w-1)2
p@ =3(3) oo 0o, 5D
\ = 2 22)
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with 2N degrees of freedom, £ {g} = X\ + 2N, Var {g} = 4
(M + N). Notice that, unlike the strictly Gaussian assumption
sometimes used in detection problems, the presence of signal
affects both the mean and variance of p, ).

For the purpose of performance prediction calculations we
assume the ETI signal bandwidth to be much less than an
analyzer bin-width, and that, if present, the signal is centered
in a bin. These assumptions correspond roughly to Swirling’s
Case I model (Ref. 5). We will not discuss the effects of
moving the signal within a bin in this article. We wish to
examine the detection performance of several processing
scenarios which cover a side range of cost and implementation
complexity. The cases in this work are summarized in Fig. 5,
and illustrated with data flow diagrams in Figs. 6-9.

A. Case |

Referring to Fig, 6, we see that detection is carried out by
applying a single threshold test to the individual qi(ffx ) This
case corresponds most closely to the classical radar detection
problem with noncoherent integration (Refs. 4, 5, 8). Since
a priovi probabilities cannot be realistically assigned for
H0 and Hl, we choose to use the Neyman-Pearson criterion
for choosing our decision threshold. With the usual notation
we define the probability of false alarm as:

00

Pra =P(D1|Ho)=f p,(4) dq (23)
Y

or

P, = 1-F(xq) (24)

where F (v, q) is the cumulative distribution function describ-
ing HO, evaluated for ¢ = v; thus

00

Fyq) = f 2@ da, 430 (25)
Y

This later form is more useful for numerical computations
(Refs. 4, 8, 9). Similarly the probability of detection is:

o0

P, = P(D,|H,) = f p,(@)dq (26)
Y
or, as above
P, =1-F(%q) 27)

Using the Neyman-Pearson criterion our threshold value,
7, is found from the required false alarm rate. Thus, we solve

Y
f p(@)dg=1-8
0

where § is the desired false alarm rate.

(28)

B. Case ll

Here we return to a discussion of the effects of antenna
beam and shape and scan rate on our ability to detect an ETI
source. A preliminary discussion of these effects for the case
N = 0 (no accumulation) is described in Lockshin and Olsen
(Ref. 10). The discussion leading up to Eq. (17) assumed that
a scan strategy could be devised so that N7 << 1/». Thus, the
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accumulator output gives us a sky sample every N7 seconds,
or spatial sampling at “points” separated by N7 radians. We
will call this spacing the “intra-scan™ separation.

8 = Nrw radians (29)

Intuitively it is clear that, given a finite £, and assuming a
uniform PDF for the spatial distribution of ETI sources, the
probability of detection should be a monotonically decreasing
function of & using the test statistic {, (or equivalently, q,).
Looked at from another viewpoint, for a given choice of §,
the scanning operation cannot be accomplished at uniform
sensitivity, an effect referred to as scalloping in Ref. 10.
This means that for a source located between ¢, and §;0q the
probability of detection will be less than if the source were
at either §, or §H1

In order to provide more uniform scan sensitivity, the
accumulator output, after baseline correction, is passed
through a convolutional filter as shown in Fig. 7. We thus
have a new test statistic given by:

(30)

where the filter weights, _, are chosen to optimize P, over
the sky area covered by the M sample points, Due to the
weighted sum in Eq. (30) the PDFs under H and H, are no
longer simply chi-square or non-central chi-square. Writing
the test statistic as:

M
u =Z ag, (31)

a single component, = aq;, has a PDF given by:

p) = P(Q/d)

Using the Fourier transform scaling property and the known
characteristic functions for p, (g) and p, (q), the characteristic
functions for p,(u) and p, (u) are found to be:

. M 1
C,Gwu) =[] ———— 32
oUoin) n (1 -7 2a0)" 2
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and

2
C (wu) = exp (-NM2A )

20,
M NA® a2/2
X exp z:
7 [1—]2aa w]
M
X S (33)
l,—[ (1 ]2a0 w)¥

As will be seen in Section IV it is not necessary to invert
Eqgs. (32) and (33) to obtain explicit expressions for p,(u)
and pl(u). A discussion of weighted signal summation may be
found in Di Franco and Rubin (Ref. 7). Since the test statistic
u is composed of M samples covering a particular area of the
sky, we actually need to compute:

p, @) = f jz;l @£, EDpED p(E) d £ d £
r (34)

where (20 50) describes the source position. Here, {p(so)
p(so)} is the joint PDF describing the spatial distribution of
sources, and is assumed to be uniform. The dependence of
p(u) on (EO E ) enters through the parameter 4, which
depends on 1ntrascan separation, 8§, HPBW, and relative source
position. The required detection probabﬂmes can be com-
puted without an explicit evaluation of Eq. (34).

C. Case lll

Further improvements in system performance can be
obtained by combining observations from adjacent scan lines,
ie., “inter-scan line” signal combination. Case III represents
an implementation of interscan line combination with a
means for drastically reducing the amount of data storage
required. Data decimation is achieved by “‘pre-thresholding”
the convolutional filter output so as to allow only a certain
percentage (on average) of the data to pass through for fur-
ther processing. The pre-threshold level is set according to:

20

f py()du = n (35)
v

14

where 7 is the fraction of data allowed to pass threshold. By
introducing inter-scan signal combination, we now have a
test statistic which is bivariate, and in which each of the




marginal distributions is a thresholded version of p (), and
p,(). If we denote the test statistic after prethresholding by
u', then (Ref. 11),

p, (), u>,
pi(u') p,('yp) ) (u - 'Yp)’ u= 'Yp ’ 1= 1: 2
(_O, u<< Tp ) (36)

The behavior of this thresholding operation is illustrated in
Fig. 10. As noted in Fig. 8, our test statistic, u, is a two-
dimensional vector whose components are {i, 4, x}. For

mensional vector whose components K
notational convenience we will simply write & = (#}, u’,) and
remember that u) and u), refer to sample observations from
adjacent scan lines. Now in order to determine the average
system response to an ETI signal located somewhere in the
area defined by the two vertically adjacent beam patterns,
we assume a uniform spatial distribution of sources all of the
same strength. Note that this result depends on vertical scan
separation and beam profile, but not on scan rate.

If we denote by £9 and &) the horizontal and vertical
coordinates describing the 1ocat10n of an ETI source (see
Fig. 11), then the joint PDF describing @ is given by:

p (1) = fﬁl(ullsl,s;z)pl(uzlzl,sz)
r

X pE ) p(E,)dE, dE, 37

where the integration is carried out over the region I', as
shown in Fig. 11. Since we are assuming uniform spatial
distribution of source locations,

p,)pE,) = 1T

The explicit dependance of p, (ul.lsl, £,),i=1,2,0n ¢, 52)
enters through the system response dependence on beam
profile in a manner analogous to that shown by Eq. (7). Again
assuming a Gaussian beam profile, the expression for 4 (§,,
£,) is given by:

A E) = 2 e, e 52; (&, - £ (&, - £2)°]

(38)

The situation described above will be recognized as a prob-
lem in composite hypothesis testing for a bivariate random

variable (Refs 2, 12). Specifically, the null hypothesis is
simple, while the alternative hypothesis is composite, being
conditioned on the ETI source location parameters. Fur-
thermore, since we are now dealing with a bivariate distribu-
tion, the decision regions, R, and R, , are no longer divided
by a single threshold value, but in fact by a family of such

values which define a decision curve on the (u'}, u/,)-plane.

The situation for a simple case is shown in F1o 17 where

ALY SILUOLIVLL AWL G DApiv VROV a5 Saiv wiltl

the Neyman-Pearson curve is taken to be a quarte1 ~circle;
the region excluded by prethresholding is shaded.

D. Case IV

For analysis purposes this case is identical to Case III
except that we remove the prethresholding operation and
allow the data to continue on to be combinatorially pro-
cessed. A practical implementation of this case would of
course require a very large amount of high-speed bulk storage
and significantly increase processor speed requirements.

As can be seen from the above discussions, we have assumed
a signal processing implementation which defers RFI and
“natural source” identification operations to the very last
processing step. This is not only useful for analysis purposes,
but is in fact probably the only practical manner in which
to implement a sky survey processing strategy. As a final note,
we point out that all of our analyses assume that the “noise”
is stationary, i.e., position independent. If this turns out to
be a poor assumption, then the detection performance must
be re-evaluated to incorporate adaptive threshold methods
(Refs. 13, 18). The following section is devoted to describing
in some detail the actual implementation of performance
calculations carried out based on the problem formulation
described in this section.

V. Performance Analysis Calculations

In this section we wish to describe the methods used to
carry out the required computations based on the discussion
of Section I1I. The objective of these calculations is to produce
a set of receiver operating characteristic (ROC) curves for
each of the processing Cases (I-IV). These ROC curves will
then be used to choose the signal processing strategy that
yields the best performance/cost ratio. As has been pointed
out in the literature (Refs. 8, 9, 14), numerical implementa-
tion of detection probability analyses encounters several
practical difficuities. Some of these difficulties will be dis-
cussed before we proceed to describe the computational
implementations actually used.

For our purposes, there are basically two computational

issues to be addressed: (1) the use of Gaussian versus true
PDFs; and (2) the choice of a numerical computation proce-
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dure for the required probabilities. At first sight one might
suspect, from the Central Limit Theorem, that Gaussian PDFs
would provide an adequate approximation for our cases.
However, we need to keep in mind that because of the small
false alarm rate requirements (<1078), we are working very
far.out on the tails of distributions. Due to the relatively small
number of samples involved (<50) one cannot expect the
Gaussian to provide a very good approximation except near
the “core” of the distribution. When using Gaussians to
model the problem, we will use the means and variances
computed from the actual non:central chi-square distributions
as the Gaussian parameters. Regardless of the actual PDFs
“used, the choice of a numerical evaluation algorithm is critical
in determining both solution accuracy, precision requirements,
and computational time. Direct numerical integration of the
PDFs invariably requires the use of extended computation
precision and dynamic range and can result in excessively
long CPU times (Refs. 8, 9) when one demands small false
alarm rates.

We shall begin our discussion by setting out those elements
of the computation that are common to all four cases. A
general computation flow diagram is shown in Fig. 13. As
pointed out in Section III, all variables are normalized by
og so that the system noise PDF is zero-mean Gaussian with
unit variance. The quantity 0(2) is determined solely by the
effective system temperature and thus represents the noise
energy at the receiver front-end. The SNRs used in computing
the ROC curves are referred to the receiver front-end, and

are defined as

2
s=sVR =P, (39)
2
400
0(2) = kT;/T

where k is Boltzmann’s constant, and T is the system tempera-
ture in Kelvin. In terms of the system parameters then:

7TD267‘SO
S = T (40)

§

In the numerical implementation of calculations described in
this section all expressions for P, and P, are parameterized
in terms of S.

One of the more elegant and powerful methods for efficient
numerical evaluation of detection probabilities has been
described by Helstrom (Refs. 14, 15). Recalling the expres-
sions for P, and P from Section III,
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Py = 1-Fyra)=1- f p@)dg (41

o0

Y
P, = 1-F(rq)=1- f P,(4) dg “2)

— o0

and that the moment generating function (MGF) for p(x)
is defined by

u@) = E {7} = f p(x)e ™ dx, x=20
0
(43)

we may write a general expression for the required quantities
using the inverse Laplace transform,

1-F(yx)= L™ 7! [1-u@)]}
(44)

ctioo

= —1 - Vx_('iﬁ
L-w v {1 -u@)] € 2

where the contour of integration is parallel to the imaginary
axis and lies to the right.of all poles in the integrand (Ref. 16).
Helstrom’s approach uses a saddlepoint integration (Ref. 17)
technique to obtain an efficient approximation to the contour
integral in Eq. (44). Taking the contour to the left of the
origin, but still to the right of all singularities in the integrand,
Eq. (44) may be expressed as

dv

(g L
1 - F(y; %) =f - p@) e 5, c<0
c—ioo

(45)

Using the fact that the integral in Eq. (45) is convex over
(~ee < » < 0) the contour is placed so as to pass through
C=vy,ie,v=v,t+iy (-o0 <y < ©9), the point v, being the
saddlepoint. Writing

v u) e = 20 (46)

and expanding ®(v) as a Taylor series about Vo
- Ry 2....
P@) = vy )+ 3 A TCRRIY

1
+ —k—!—qa(k) -+ 47)




the expression for [1 - F(y; x)] becomes
1-F(yx)= -v3! [209" (v,)] V2

(48)

X u@,) e (1+R), p, <0

where R is the residual term given by Helstrom (Ref. 14).
The saddlepoint is found simply by solving

') =2 n [u@)] +y-+= 0 (49)

numerically and noting that ®(v) possesses only a single
minimum (v = »,) on the interval (-o < » < 0). As Helstrom
points out, for |E{g} = vy | 3> g, the residual term may be
neglected and we shall use the zero-order approximation,

ve <0
(50)

1-F(yx) = -vg' 209" ()] 77 () €0,

The threshold, v, for a given choice of P_, is determined by

FA
an iterative solution of Eq. (50).

The treatment of Case Il and Cases 1II and IV requires
evaluation of conditional probabilities. As can be seen from
Egs. (21) and (36), direct evaluation of the integrals involved
is quite tedius and such an approach would not allow us to
take advantage of Helstrom’s approximation technique. We
therefore propose to treat these cases in the framework of a
fluctuating target model (Ref. 5). The “fluctuation” is being
induced by the antenna scan parameters and the assumption
of a uniform spatial distribution for the probability of finding
the source at a particular location within the area covered.
Another view of Egs. (31) and (37) is that the source position
(89, £2) results in a conditioning of p, (*) on X, the non-central
parameter.

Utilizing the above interpretation of the conditional prob-
abilities encountered in Cases II-1V, we rewrite Eq. (43) as

00

e 1) = f p,(@)e™ dq (51)
0

where p, (9) is our non-central chi-square PDF with NV degrees
of freedom and non-central parameter A. Recall that A is in
fact the total signal-to-noise ratio at the output of the con-
volutional filter. For the given PDF, Eq. (51) yields (Ref. 14)

uid) =1+ v)~N exp [- 2/(1 + )] (52)

Denoting by p,(A | ) the PDF of X which describes the
fluctuation model, the unconditional MGF is obtained from

00

u) = f u® 1D, (N dA (53)
0

With suitable change of variable, Eq. (53) is seen to be the
Laplace transform ofp}\(°) and thus the unconditional MGF is

ue) = (L+0)™" DI +0)] (54)
where y, [+] is the MGF of the distribution describing our
fluctuation model. Therefore, given a suitable fluctuation
model which yields u, [*] in analytic form, we may utilize the
saddlepoint method to compute approximate detection
probabilities for Cases II-1V.

Recalling the discussion and assumptions leading up to
Eq. (17) in Section III, our Case II appears to formally corre-
spond to the Swerling model I. In practice the situation
actually lies somewhere between Swerling I and II. For sim-
plicity we take our fluctuation model PDF to be (Ref. 5)

PO = 3 exp (- 1) (55)
where A is computed by averaging the antenna response over
the area covered by our M-point convolution of Eq. (28).
Note that this averaging process includes the convolutional
weights for each of the M samples. Cases Il and IV are treated
in the same way, the obvious extension to bivariate
distributions.

Finally we note that the MGF describing the test statistics
used in Cases II-IV, can be derived in a manner similar to that
used in finding the characteristic functions, Egs. (32) and (33).
Thus, for Case II the MGF’s under {HO} and {Hl} are given
by

M
ue®) =[] (+an™ (56)
i=1

and

a PV

M M
) = exp [—; T+a V):I 11:1[(1 +a )N (57)

where, as before, the g, denote the convolutional filter weights.
Here it is most convenient to use the cumulant generating
function, 2 (») = In u(v) and we then have
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M
hy®) = —NZ In (1 +a,v) (58)
i=1
and
a, \v

M M
h @) = {:m -N ;111(1 tar)  (59)

Results of our performance calculations for the Gaussian
model are shown in Fig. 14 and 15, for P, of 107'? and

1078 respectively. For an assumed antenna temperature of
25K, an SNR ratio of 1 is equivalent to a rec\%ed flux of
approximately 2 X 10723 W/m? at the antenna. The relative
performance of the four cases studied is easily seen from these
Receiver Operating Characteristic (ROC) curves. The largest
increase in performance comes in going from Case I to Case 11,
where we add intra-scan combination processing. As is to be
expected, there is little difference in performance between
Cases III and IV, both cases yielded a performance increase
of about a factor of two over that for Case 1I. A similar set
of ROC calculations is currently being carried out using the
actual chi-square distributions which describe the problem
and will be reported in a later paper.
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Table 1. Characteristics of the All Sky Survey
(for a 34-m parabolic antenna)

Spatial Coverage
Frequency Coverage
Duration of Survey
Dwell Time on Source
Frequency Resolution
Sensitivity

Spatial Uniformity
Variation with Frequency

Polarization

Signal Type

4¢ steradians

1-10 GHz and higher spot bands
5-10 years

0.5-10 seconds

10~-30 Hz

~10723 Watts/meter?

12% peak-to-peak
wy1/2

Simultaneous Dual Circular
Continuous Wave (CW)




90 // 00 //// /
ALTERNATE PIXELATION STRATEGY
/////// 7

60

!

-5 L L 12 llé 2Io 24

RIGHT ASCENSION, hrs

Fig. 1. Schematic representation of sky pixelation
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Fig. 2. Antenna scan effects: (a) the expected response within a frequency bin as the antenna
beam is swept across a source; (b) the SNR loss as a function of filter length, X, in HPBWs
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